Three Perspectives on Multi-Agent Reinforcement Learning

نویسندگان

  • Yang Gao
  • Hao Wang
  • Ruili Wang
چکیده

This chapter concludes three perspectives on multi-agent reinforcement learning (MARL): (1) cooperative MARL, which performs mutual interaction between cooperative agents; (2) equilibrium-based MARL, which focuses on equilibrium solutions among gaming agents; and (3) best-response MARL, which suggests a no-regret policy against other competitive agents. Then the authors present a general framework of MARL, which combines all the three perspectives in order to assist readers in understanding the intricate relationships between different perspectives. Furthermore, a negotiation-based MARL algorithm based on meta-equilibrium is presented, which can interact with cooperative agents, games with gaming agents, and provides the best response to other competitive agents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Revisiting the Master-Slave Architecture in Multi-Agent Deep Reinforcement Learning

Many tasks in artificial intelligence require the collaboration of multiple agents. We exam deep reinforcement learning for multi-agent domains. Recent research efforts often take the form of two seemingly conflicting perspectives, the decentralized perspective, where each agent is supposed to have its own controller; and the centralized perspective, where one assumes there is a larger model co...

متن کامل

Multi-objective optimization perspectives on reinforcement learning algorithms using reward vectors

Reinforcement learning is a machine learning area that studies which actions an agent can take in order to optimize a cumulative reward function. Recently, a new class of reinforcement learning algorithms with multiple, possibly conflicting, reward functions was proposed. We call this class of algorithms the multi-objective reinforcement learning (MORL) paradigm. We give an overview on multi-ob...

متن کامل

Evolutionary game theory and multi-agent reinforcement learning

In this paper we survey the basics of Reinforcement Learning and (Evolutionary) Game Theory, applied to the field of Multi-Agent Systems. This paper contains three parts. We start with an overview on the fundamentals of Reinforcement Learning. Next we summarize the most important aspects of Evolutionary Game Theory. Finally, we discuss the state-of-the-art of Multi-Agent Reinforcement Learning ...

متن کامل

A Survey on Multiagent Reinforcement Learning Towards Multi-Robot Systems

Multiagent reinforcement learning for multirobot systems is a challenging issue in both robotics and artificial intelligence. With the ever increasing interests in theoretical research and practical applications, currently there have been a lot of efforts towards providing some solutions to this challenge. However, there are still many difficulties in scaling up multiagent reinforcement learnin...

متن کامل

Multiagent Reinforcement Learning for Multi-Robot Systems: A Survey

Multiagent reinforcement learning for multirobot systems is a challenging issue in both robotics and artificial intelligence. With the ever increasing interests in theoretical researches and practical applications, currently there have been a lot of efforts towards providing some solutions to this challenge. However, there are still many difficulties in scaling up the multiagent reinforcement l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016